Friday, December 18, 2009

Medical research




Biomedical research
(or experimental medicine), in general simply known as medical research, is the basic research, applied research, or translational research conducted to aid and support the body of knowledge in the field of medicine. Medical research can be divided into two general categories: the evaluation of new treatments for both safety and efficacy in what are termed clinical trials, and all other research that contributes to the development of new treatments. The latter is termed preclinical research if its goal is specifically to elaborate knowledge for the development of new therapeutic strategies. A new paradigm to biomedical research is being termed translational research, which focuses on iterative feedback loops between the basic and clinical research domains to accelerate knowledge translation from the bedside to the bench, and back again.
Cell culture vials.

The increased longevity of humans over the past century can be significantly attributed to advances resulting from medical research. Among the major benefits have been vaccines for measles and polio, insulin treatment for diabetes, classes of antibiotics for treating a host of maladies, medication for high blood pressure, improved treatments for AIDS, statins and other treatments for atherosclerosis, new surgical techniques such as microsurgery, and increasingly successful treatments for cancer. New, beneficial tests and treatments are expected as a result of the human genome project. Many challenges remain, however, including the appearance ofantibiotic resistance and the obesity epidemic.

Most of the research in the field is pursued by biomedical scientists in cooperation with molecular biologists.

Contents


Preclinical research

Preclinical research is research in basic science, which precedes the clinical trials, and is almost purely based on theory and animal experiments.

New treatments come about as a result of other, earlier discoveries — often unconnected to each other, and in various fields. Sometimes the research is done for non-medical purposes, and only by accident contributes to the field of medicine (for example, the discovery of penicillin). Clinicians use these discoveries to create a treatment regimen, which is then tested in clinical trials.


Clinical trials

A clinical trial is a comparison test of a medication or other medical treatment, versus a placebo, other medications and devices, or the standard medical treatment for a patient's condition. Clinical trials vary greatly in size: from a single researcher in one hospital or clinic to an internationalmulticenter trial with several hundred participating researchers on several continents. The number of patients tested can range from as few as a dozen to several thousands.

Every new drug formulation used in a clinical trial has to first undergo rigorous tests in a laboratory. Once the results from those tests confirm that the formulation is safe to be taken by humans, the drug is given to healthy volunteers in what are called Phase I clinical trials.


Funding

Research funding in many countries comes from research bodies which distribute money for equipment and salaries. In the UK, funding bodies such as the Medical Research Council derive their assets from UK tax payers, and distribute this to institutions in a competitive manner.

In the United States, the most recent data from 2003 suggest that about 94 billion dollars were provided for biomedical research in the United States. The National Institutes of Health and pharmaceutical companies collectively contribute 26.4 billion dollars and 27.0 billion dollars, respectively, which constitute 28% and 29% of the total, respectively. Other significant contributors include biotechnology companies (17.9 billion dollars, 19% of total), medical device companies (9.2 billion dollars, 10% of total), other federal sources, and state and local governments. Foundations and charities, led by the Bill and Melinda Gates Foundation, contributed about 3% of the funding.

The enactment of orphan drug legislation in some countries has increased funding available to develop drugs meant to treat rare conditions, resulting in breakthroughs that previously were uneconomical to pursue.


Regulations and guidelines

Medical research is highly regulated. National regulatory authorities oversee and monitor medical research, such as for the development of new drugs. In the USA the Food and Drug Administration oversees new drug development, in Europe the European Medicines Agency (see alsoEudraLex), and in Japan the Ministry of Health, Labour and Welfare (Japan). The World Medical Association develops the ethical standards for the medical profession, involved in medical research. The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) works on the creation of rules and guidelines for the development of new medication, such as the guidelines for Good Clinical Practice (GCP). All ideas of regulation are based on a country's ethical standards code. This is why treatment of a particular disease in one country may not be allowed, but is in another.


Conflicts of interest

In 2001, the editors of 12 major journals issued a joint editorial, published in each journal, on the control over clinical trials exerted by sponsors, particularly targeting the use of contracts which allow sponsors to review the studies prior to publication and withhold publication. They strengthened editorial restrictions to counter the effect. The editorial noted that contract research organizations had, by 2000, received 60% of the grants from pharmaceutical companies in the U.S. Researchers may be restricted from contributing to the trial design, accessing the raw data, and interpreting the results.


Fields of biomedical research include:


Saturday, December 12, 2009

Research
Extraction of average neck flexion angle during swallowing in neutral and chin-tuck positions
Delbert Hung, Ervin Sejdić, Catriona M Steele, Tom Chau

Abstract

Background

A common but debated technique in the management of swallowing difficulties is the chin tuck swallow, where the neck is flexed forward prior to swallowing. Natural variations in chin tuck angles across individuals may contribute to the differential effectiveness of the technique.

Methodology

To facilitate the study of chin tuck angle variations, we present a template tracking algorithm that automatically extracts neck angles from sagittal videos of individuals performing chin tuck swallows. Three yellow markers geometrically arranged on a pair of dark visors were used as tracking cues.

Results

The algorithm was applied to data collected from 178 healthy participants during neutral and chin tuck position swallows. Our analyses revealed no major influences of body mass index and age on neck flexion angles during swallowing, while gender influenced the average neck angle only during wet swallows in the neutral position. Chin tuck angles seem to be independent of anthropometry and gender in healthy adults, but deserve further study in pathological populations.

Conclusion

The proposed neck flexion angle extraction algorithm may be useful in future studies where strict participant compliance to swallowing task protocol can be assured.

Research
Evaluating the forced oscillation technique in the detection of early smoking-induced respiratory changes
Alvaro CD Faria, Agnaldo J Lopes, José M Jansen, Pedro L Melo

Abstract

Background

Early detection of the effects of smoking is of the utmost importance in the prevention of chronic obstructive pulmonary disease (COPD). The forced oscillation technique (FOT) is easy to perform since it requires only tidal breathing and offers a detailed approach to investigate the mechanical properties of the respiratory system. The FOT was recently suggested as an attractive alternative for diagnosing initial obstruction in COPD, which may be helpful in detecting COPD in its initial phases. Thus, the purpose of this study was twofold: (1) to evaluate the ability of FOT to detect early smoking-induced respiratory alterations; and (2) to compare the sensitivity of FOT with spirometry in a sample of low tobacco-dose subjects.

Methods

Results from a group of 28 smokers with a tobacco consumption of 11.2 ± 7.3 pack-years were compared with a control group formed by 28 healthy subjects using receiver operating characteristic (ROC) curves and a questionnaire as a gold standard. The early adverse effects of smoking were adequately detected by the absolute value of the respiratory impedance (Z4Hz), the intercept resistance (R0), and the respiratory system dynamic compliance (Crs, dyn). Z4Hz was the most accurate parameter (Se = 75%, Sp = 75%), followed by R0 and Crs, dyn. The performances of the FOT parameters in the detection of the early effects of smoking were higher than that of spirometry (p <>

Conclusion

This study shows that FOT can be used to detect early smoking-induced respiratory changes while these pathologic changes are still potentially reversible. These findings support the use of FOT as a versatile clinical diagnostic tool in aiding COPD prevention and treatment.


Research
Non-linear dielectric spectroscopy of microbiological suspensions
Ernesto F Treo, Carmelo J Felice
BioMedical Engineering OnLine 2009, 8:19 (22 September 2009)

Abstract

Background

Non-linear dielectric spectroscopy (NLDS) of microorganism was characterized by the generation of harmonics in the polarization current when a microorganism suspension was exposed to a sinusoidal electric field. The biological nonlinear response initially described was not well verified by other authors and the results were susceptible to ambiguous interpretation. In this paper NLDS was performed to yeast suspension in tripolar and tetrapolar configuration with a recently developed analyzer.

Methods

Tripolar analysis was carried out by applying sinusoidal voltages up to 1 V at the electrode interface. Tetrapolar analysis was carried on with sinusoidal field strengths from 0.1 V cm-1 to 70 V cm-1. Both analyses were performed within a frequency range from 1 Hz through 100 Hz. The harmonic amplitudes were Fourier-analyzed and expressed in dB. The third harmonic, as reported previously, was investigated. Statistical analysis (ANOVA) was used to test the effect of inhibitor an activator of the plasma membrane enzyme in the measured response.

Results

No significant non-linearities were observed in tetrapolar analysis, and no observable changes occurred when inhibitor and activator were added to the suspension. Statistical analysis confirmed these results.

When a pure sinus voltage was applied to an electrode-yeast suspension interface, variations higher than 25 dB for the 3rd harmonic were observed. Variation higher than 20 dB in the 3rd harmonics has also been found when adding an inhibitor or activator of the membrane-bounded enzymes. These variations did not occur when the suspension was boiled.

Discussion

The lack of result in tetrapolar cells suggest that there is no, if any, harmonic generation in microbiological bulk suspension. The non-linear response observed was originated in the electrode-electrolyte interface. The frequency and voltage windows observed in previous tetrapolar analysis were repeated in the tripolar measurements, but maximum were not observed at the same values.

Conclusion

Contrary to previous assertions, no repeatable dielectric non-linearity was exhibited in the bulk suspensions tested under the field and frequency condition reported with this recently designed analyzer. Indeed, interface related harmonics were observed and monitored during biochemical stimuli. The changes were coherent with the expected biological response.


Research
Biomechanical analysis of the relation between movement time and joint moment development during a sit-to-stand task
Shinsuke Yoshioka, Akinori Nagano, Dean C Hay, Senshi Fukashiro

Abstract

Background

Slowness of movement is a factor that may cause a decrease of quality of daily life. Mobility in the elderly and people with movement impairments may be improved by increasing the quickness of fundamental locomotor tasks. Because it has not been revealed how much muscle strength is required to improve quickness, the purpose of this study was to reveal the relation between movement time and the required muscle strength in a sit to stand (STS) task. Previous research found that the sum of the peak hip and knee joint moments was relatively invariant throughout a range of movement patterns (Yoshioka et al., 2007, Biomedical Engineering Online 6:26). The sum of the peak hip and knee joint moment is an appropriate index to evaluate the muscle strength required for an STS task, since the effect of the movement pattern variation can be reduced, that is, the results can be evaluated purely from the viewpoint of the movement times. Therefore, the sum of the peak hip and knee joint moment was used as the index to indicate the required muscle strength.

Methods

Experimental kinematics data were collected from 11 subjects. The time at which the vertical position of the right shoulder fell outside three standard deviations of the vertical positions during the static initial posture was regarded as the start time. The time at which the vertical position fell within three standard deviations of the vertical positions during static upright standing posture was regarded as the finish time. Each movement time of the experimental movements was linearly lengthened and shortened through post-processing. Combining the experimental procedure and the post-processing, movements having various movement patterns and a wide range of movement times were obtained. The joint moment and the static and inertial components of the joint moment were calculated with an inverse dynamics method. The static component reflects the gravitational and/or external forces, while the inertial component reflects the acceleration of the body.

Results

The quantitative relation between the movement time and the sum of the peak hip and knee joint moments were obtained. As the STS movement time increased, the joint moments decreased exponentially and converged to the static component (1.51 ~ 1.54 N.m/kg). When the movement time was the longest (movement time: 7.0 seconds), the joint moments (1.57 N.m/kg) closely corresponded to the minimum of 1.53 N.m/kg as reported by Yoshioka et al..

Conclusion

The key findings of this study are as follows. (1) The minimum required joint moment for an STS task is essentially equivalent to the static component of the joint moment. (2) For fast and moderate speed movements (less than 2.5 seconds), joint moments increased exponentially as the movement speed increased. (3) For slow movements greater than 2.5 seconds, the joint moments were relatively constant. The results of this STS research has practical applications, especially in rehabilitations and exercise prescription where improved movement time is an intended target, since the required muscle strength can be quantitatively estimated

Research
The development of 3-D, in vitro, endothelial culture models for the study of coronary artery disease
Monica A Farcas, Leonie Rouleau, Richard Fraser, Richard L Leask

Abstract

The response of the vascular endothelium to wall shear stress plays a central role in the development and progression of atherosclerosis. Current studies have investigated endothelial response using idealized in vitro flow chambers. Such cell culture models are unable to accurately replicate the complex in vivo wall shear stress patterns arising from anatomical geometries. To better understand this implication, we have created both simplified/tubular and anatomically realistic in vitro endothelial flow models of the human right coronary artery. A post-mortem vascular cast of the human left ventricular outflow tract was used to create geometrically accurate silicone elastomer models. Straight, tubular models were created using a custom made mold. Following the culture of human abdominal aortic endothelial cells within the inner lumen, cells were exposed to steady flow (Re = 233) for varying time periods. The resulting cell morphology was analyzed in terms of shape index and angle of orientation relative to the flow direction. In both models a progressive elongation and alignment of the endothelium in the flow direction was observed following 8, 12, and 24 hours. This change, however, was significantly less pronounced in the anatomical model (as observed from morphological variations indicative of localized flow features). Differences were also observed between the inner and outer walls at the disease-prone proximal region. Since morphological adaptation is a visual indication of endothelial shear stress activation, the use of anatomical models in endothelial genetic and biochemical studies may offer better insight into the disease process.

Research
Robust algorithm for arrhythmia classification in ECG using extreme learning machine
Jinkwon Kim, Hang Sik Shin, Kwangsoo Shin, Myoungho Lee

Abstract

Background

Recently, extensive studies have been carried out on arrhythmia classification algorithms using artificial intelligence pattern recognition methods such as neural network. To improve practicality, many studies have focused on learning speed and the accuracy of neural networks. However, algorithms based on neural networks still have some problems concerning practical application, such as slow learning speeds and unstable performance caused by local minima.

Methods

In this paper we propose a novel arrhythmia classification algorithm which has a fast learning speed and high accuracy, and uses Morphology Filtering, Principal Component Analysis and Extreme Learning Machine (ELM). The proposed algorithm can classify six beat types: normal beat, left bundle branch block, right bundle branch block, premature ventricular contraction, atrial premature beat, and paced beat.

Results

The experimental results of the entire MIT-BIH arrhythmia database demonstrate that the performances of the proposed algorithm are 98.00% in terms of average sensitivity, 97.95% in terms of average specificity, and 98.72% in terms of average accuracy. These accuracy levels are higher than or comparable with those of existing methods. We make a comparative study of algorithm using an ELM, back propagation neural network (BPNN), radial basis function network (RBFN), or support vector machine (SVM). Concerning the aspect of learning time, the proposed algorithm using ELM is about 290, 70, and 3 times faster than an algorithm using a BPNN, RBFN, and SVM, respectively.

Conclusion

The proposed algorithm shows effective accuracy performance with a short learning time. In addition we ascertained the robustness of the proposed algorithm by evaluating the entire MIT-BIH arrhythmia database.